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with

�rn =

0.088 969, if n=1
0.011 57, if n=2
0.019 70, if n=3

�rn =

0.4450, if n=1
0.3985, if n=2
0.4277, if n=3


rn =

0.6189, if n=1
0.6039, if n=2
0.5178, if n=3.

The values of the parameters�rn, �rn, and 
rn were deter-
mined numerically, in order to minimize the average error of the
approximate roots.

The exact values of the roots can now be calculated by the method
of [4] using as interval for the search of the rootsxrnm : [xr
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nm � xrn�1;m)], for n = 2

and n = 3, and [xrn�1;m + :4(xrn�1;m � xrn�2;m); xrn�1;m +

1:4(xrn�1;m � xrn�2;m)] for n � 4.
The roots of the denominator of the functionS are the solution of:

Jm(�x)Ym(x)� Jm(x)Ym(�x) = 0: (A3)

It should be observed that this equation is the same as the
characteristic equation for TM modes in a coaxial circular waveguide.

The procedure to determine the rootsxsnm is the same as applied
to the functionR. The method of [4] is again used, with the same
intervals defined above forR, but replacingxrapnm andxrnm by xsapnm
andxsnm, respectively. The values ofxsapnm are given by:

xs
ap

nm = (c3xs
<
nm)2 + (c4xs

>
nm)2; n = 1; 2; 3; 0 � m � 50

(A4)

with

c3 =(1:� �)
�s

c4 =
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1 + �

�s (m+1)

xs
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nm =pnm xs
>

nm =
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1 + �

�sn =

-0.002 591, if n=1
0.015 33, if n=2
0.024 62, if n=3

�sn =

0.2853, if n=1
0.4413, if n=2
0.4068, if n=3


sn =

0.8402, if n=1
0.5396, if n=2
0.5014, if n=3.
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Analytical Behavior of the Noise Resistance
and the Noise Conductance for a Network

with Parallel and Series Feedback

Luciano Boglione, Roger D. Pollard, and Vasil Postoyalko

An analysis is presented of the changes of the noise parameters of a
two-port network when noisy series and parallel feedback immittances
are applied. Exact formulas for the noise parametersRn; gn, and �n
are given as functions of the feedback for a given network. It is proved
that Rn always reaches a minimum when a reactive series feedback is
considered. The same results are demonstrated forgn since a duality
principle is pointed out. The results are valid for a wide range of linear
microwave two-port networks, either passive or active, and they are used
to confirm the data from previously published work.

Index Terms—Amplifier noise, feedback amplifiers, feedback circuits,
microwave amplifiers, noise.

I. INTRODUCTION

In [1], some guidelines are outlined for feedback amplifier design.
The resistive parallel feedback has been investigated by [2] and [3].
The change of the noise figure in the case of either parallel or
series feedback was worked out by [4]. In [5], series and parallel
feedback are analyzed in order to get simultaneously optimum noise
and good input/output standing-wave ratio (SWR). In [6], monolithic
technology to fabricate a series feedback amplifier in order to get good
repeatability during fabrication and the simultaneous noise match and
optimum input SWR is applied. Both simulation and experimental
validation of anX-band monolithic four-stage low-noise amplifier
with series feedback is carried out in [7]; however, the paper does
not detail how the simulation has been carried out.

This paper generalizes the results of [6] and [7] using a procedure
similar to [1], provides a mathematical tool to investigate the signal
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Fig. 1. Schematic of a noisy two-port with series and parallel feedback.

and noise behavior of a feedback network, and presents exact and
explicit formulas of the noise parameters for a network with both
parallel and series noisy feedback at a given frequency. The approach
is not related to any particular technology; the only requirement is a
knowledge of the signal matrix and the noise parameters at a given
frequency.

II. THE SIGNAL AND NOISE LINEAR ANALYSIS

Consider the linear circuit in Fig. 1 at a constant frequencyfo
whose elements are as follows:

1) black box (typically an active device) characterized by its noise
parametersRt; gt; �t [8], and a signal matrix (as the scattering
or the transmissionAtBtCtDt matrix);

2) parallel admittanceYp = Gp + jBp;
3) series impedanceZs = Rs + jXs.

Zs andYp are uncorrelated noise sources, modeled byes and ip,
respectively [9].

The subscriptt refers to the active network,s to the series
feedback, p to the parallel feedback, andn to the overall network.
Assume the active network is represented by its impedance matrix
Zt. The series feedback element can be added directly:Zt + Zs

whereZs = ZsUs; Us =
1 1

1 1
. Then, the sum matrix is inverted

and the parallel feedback matrix is added:

Yn = Yp + (Zt + Zs)
�1 (1)

whereYp = YpUp andUp =
1 �1

�1 1
:Yn is the admittance

matrix of the overall circuit.

A similar procedure can be followed in order to obtain the noise
parameters [10] and [11]. Let the following matrices be defined:

Ct =
et et� et it

�

it et� it it
�

(2)

Cs =
es es� es es�

es es� es es�
= <e[Zs] (3)

Cp =
ip ip

� �ip ip�

�ip ip� ip ip
�

= <e[Yp] (4)

where? denotes the complex conjugate and the overbar the statistical
average. It is tacitly assumed that all noise powers, hence the matrices,
are normalized to4kTo�f . The impedance form [10] of the noise
matrix of the active circuit is obtained:

C
(z)

t
= T(t!Z)CtT(t!Z)

+ where: T(t!Z) =
1 �A

C

0 � 1

C

:

At and Ct are elements of the transmission matrix of the active
circuit and+ indicates the Hermitian conjugation.T(P!Q) is the
transformation matrix from theP to the Q network representation
[10].

The noise matrix (3) of the series feedback impedance is added:

Cz = C
(z)

t
+Cs:

Converting this to admittance form and adding to it the noise matrix
of the parallel feedback (4) we obtain the admittance form of the noise
matrix for the complete circuit. Thus:

Cy = T(Z!Y )CzT(Z!Y )
+
+Cp where: T(Z!Y ) = (Zt + Zs)

�1
:

Converting the admittance form to theABCD matrix form:

Cn =T(Y!T )CyT(Y!T )
+

=T(Y!T )CpT(Y!T )
+
+T(Z!T )CsT(Z!T )

+

+T(t!T )CtT(t!T )
+
:

Cn is formed by the sum of the contributions from the parallel
feedback (first term), from the series feedback (second term), and
from the active network (third term). Here,

T(Y!T ) =
0 � 1

Y

1 �
Y

Y

T(Z!T ) = T(Y!T )T(Z!Y )

T(t!T ) = T(Z!T )T(t!Z)

and Yn are terms of (1).
The four noise parameters can be expressed in terms of the matrix

elements ofCn [10]:

Cn =
en en� en in

�

in en� in in
�

=
Rn �n

?
p
Rngn

�n
p
Rngn gn

: (5)

The expansion of (5) gives (see (6)–(8) at the bottom of the next
page), where
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TABLE I
DUALITY RULES

III. T HE DUALITY IN THE NOISE PARAMETERS

Equations (6)–(8) are ratios of polynomials where the common
denominator isj � j2. Notice that the coefficientsri of (6) depend
on Gp, the real part ofYp, but not onBp, its imaginary part. Since
Rn depends onBp only through the denominatorj � j2, it follows
that a large value of susceptive feedback (at constant frequency) will
decreaseRn. This dependence onBp will make Rn close to zero
for large values ofj Zs j and different from zero for small values
of j Zs j at constantYp.

Also notable is that the noise parameters transform into each other
according to the rules of Table I. This set of duality rules is to be
read as follows: ifRn is determined as in (6) butgn has not yet been
determined, then (7) can be worked out by substituting every symbol
of (6) found in Table I, line I, with the corresponding one in line II.
On this basis, if a particular behavior is found inRn (gn), a similar
behavior will be expected ingn (Rn).

IV. M INIMA IN Rn AND gn

The noise parameters (6), (7), and (8) can be studied analytically.
This aims to designFn ' Fn , an overall noise figureFn as
insensitive as possible to the mismatchj YS � YSopt j [12] or
equivalently toj �S � �Sopt j. This goal can be achieved whenRn

is as small as possible at the design frequency. Thus, the feedback
element values which provide minima inRn are sought. On the basis
of the duality principle, equivalent results can be expected fromgn.

This analysis is easily carried out when one single reactive feed-
back element is considered. Thus, assumeZs = jXs; Yp = 0; the
dual task concerninggn would requireZs = 0; Yp = jBp.

In order to proceed,Rn is rewritten as

Rn =
AXs

2 + BXs + C

DXs
2 + EXs + 1

: (9)

A, � � �, E are derived from (6). SinceRn cannot be negative, the
following statements are satisfied.

Fig. 2. Equivalent noise resistanceRn and minimum noise figureFmin

versus feedback for Hewlett Packard ATF21186 MESFET at 8 GHz:
Rn = 49:53 
 at Cs = 0:01 pF (not shown);Rn = 0:57 


at Cs = 0:80 pF; Rn = 49:42 
; Zo = 50 
.

1) The coefficientA is always positive:

A =j apgt + Ct �t
?
p
Rt j2 +Rt j Ct j2 1� j �t j2 ;

2) B2 � 4AC � 0. Thus, a particular black box along with the
proper feedback might provideRn = 0.

The limit Rn = lim
X !�1

Rn is finite and positive because (9)

is a ratio of second-degree polynomials.
By setting the first derivative to zero, it is found that the minima

Xs satisfy

(AE �BD)X
2
s + 2 (A�DC)Xs + (B � EC) = 0:

Two solutions are expected: a minimumRn for Xs = Xs and
a maximumRn for Xs = Xs .

V. DISCUSSION OF THERESULTS

Microwave-active devices such as MESFET’s, JFET’s, and
HEMT’s with a reactive-series feedback have been analyzed in
order to work out the value ofXs and the correspondingRn .
The simulation shows that whereRn occurs, the minimum noise
figure Fn of the overall network is smaller than the minimum
noise figureFt of the black box. It is also noticeable thatRn

may be achieved by a capacitive-series feedback (Fig. 2).
This analysis shows that if the signal matrix is comprised of real

numbers, no minimum will occur. Thus, a microwave active device
will exhibit a minimum, while a simple resistive attenuator will
not. However, a minimum in the noise parameters will occur when
feedback is applied to a passiveL, C, R network.

Rn =
r1 j Zs j2 +r2Rs + r3Xs + r4Gp +Rt

j � j2 (6)

gn =
g1 j Yp j2 +g2Gp + g3Bp + g4Rs + gt

j � j2 (7)

�n Rngn =
c1Zs

? + c2Zs
?Yp + c3Yp + c4Zs

?Gp + c5YpRs + c6Gp + c7Rs + �o

j � j2 (8)
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TABLE II
CALCULATED RESULTS FOR THEDEVICE IN [13].

To demonstrate experimental evidence for the validity of the
analysis presented above, the results in [13] are considered, which
show a minimum inRn [13, Fig. 4]. If device parameters [13, page
324] are entered into (6), (7), and (8), the values of Table II are
obtained in agreement with those results. The maximum inRn is
missing in [13, Fig. 4], since it occurs for a very large value of
(�Xs), whereRn ' Rn ' Rn .

VI. CONCLUSION

Closed-form expressions have been presented for the noise param-
eters with parallel and series feedback. It has been demonstrated that
Rn always reaches a maximum and minimum, and the possibility
of Rn = 0 has been pointed out. The same conclusions can be
applied togn, since a duality principle exists. The theory shows that
a minimum in the noise parameterRn or gn of either an active or
passive black box may exist as long as its signal matrix is not purely
real. A previous paper and its results have been used in order to
demonstrate experimental evidence for the correctness of the formulas
presented. This theory may help to design very low noise-feedback
microwave amplifiers.
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Investigating Nonlinear Propagation
in Dielectric Slab Waveguides

Jian-Guo Ma

Abstract—A numerical method is employed to analyze the TE-wave
propagation in Kerr-like nonlinear dielectric waveguides in which a
nonlinear film is sandwiched between two linear media. The dispersion
curves dependent on the magnitude of the electric field are obtained. All
the results can be used in future investigations of devices composed of
nonlinear dielectric slab structures.

Index Terms—Dispersion, Kerr-like, nonlinearity, waveguide.

I. INTRODUCTION

It has been apparent for a long time that nonlinear propagation in
optical and millimetric waveguides holds promise in the context of
integrated signal processing [1]. In recent years, with the development
of technology, guided waves in nonlinear dielectric slab waveguides
received considerable attention owing to their potential applications
to optical communications and optical computing.

For the nonlinear core waveguide, a general dispersion equation
was developed in [2], using the modulus of a Jacobian elliptic
function; however, spurious roots then appear in the dispersion
equations [4]. The phase-plane approach was recently used in [1]
to discuss the problem, which provides a physical interpretation of
the results. This method can be applied to arbitrary nonlinearities. In
all other cases, numerical methods such as in [3], [7], and [8], along
with many others, have been employed.

In this paper, another numerical method is used to solve the
nonlinear propagation in slab guides with a nonlinear core. The
method transmits the values of the field from one boundary to another,
therefore, it is called the transfer matrix method (TMM). In [9], the
same idea was successfully used to numerically analyze the nonlinear
planar waveguide with a linear core—a linear film is supported by
a linear medium and covered by a nonlinear medium. In this paper,
global coordinates are used to simplify the problem.
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